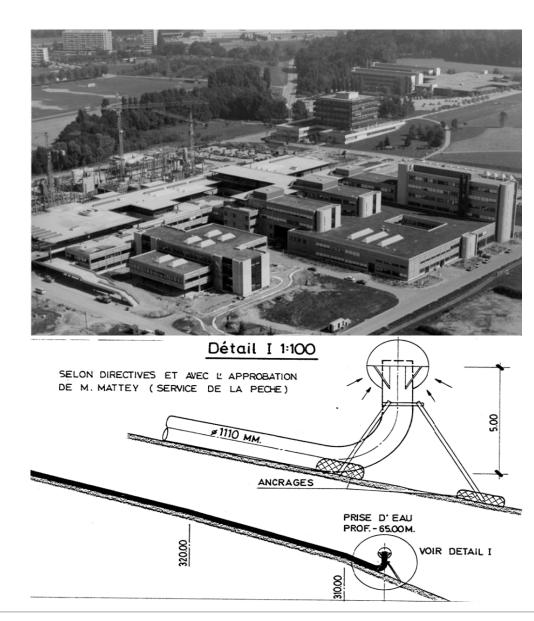


Programme

1	Historique & Planning
2	Présentation du projet
3	Mesures environnementales
4	Questions & Discussion
5	Visite virtuelle du projet
6	Questions & Discussion

HISTORIQUE & PLANNING

Philippe VOLLICHARD


Responsable Durabilité EPFL

Historique

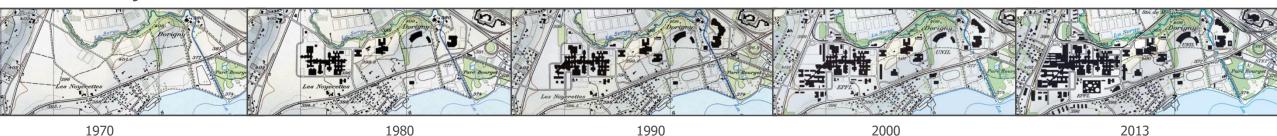
Inauguration de l'EPFL à Ecublens en 1978

- Besoins de refroidissement importants de l'UNIL/EPFL
- Réalisation d'une station de pompage d'eau du lac en 1978
- Concession pour 700 l/s puis 1'150 l/s
- Stratégie énergétique ambitieuse de l'EPFL
- Développement d'un système par thermopompes
- Appoint par turbines à mazout

Historique

Depuis 1986

- Chauffage renouvelable > 80%
- Refroidissement renouvelable > 97%


Économie 2016 ~ 3'500'000 litres mazout

Soit la consommation de 3'000 ménages

Pourquoi renouveler les infrastructures ?

- Obsolescence des équipements
- Capacité pour les besoins futurs EPFL et UNIL
- Objectif 100% renouvelable

Planning

Procédure

07.03.2017 Présentation DGE

07.11.2017 Rapport d'enquête

préliminaire, CIPE

08.11.2017 Présentation en

Commission COH

Fév. - Avril 2018 Consultations

préalables du dossier

Mai - Juillet 2018 Mises à l'enquête

Concession de

pompage

Travaux

Janv. 2019 - Mars 2021

PRÉSENTATION DU PROJET

Damien ROULET

Chef de projet EPFL Responsable Grands projets Romandie Bouygues Energies & Services

Données du projet

Maître d'ouvrage

Ecole polytechnique fédérale de Lausanne (EPFL)

Entreprise totale

Bouygues Energies & Services (pilotage & réalisation)

Montant

CHF 60 millions

Durée des travaux

2019-2021

Objectifs

EPFL: 16'000 personnes (UNIL: 18'000)

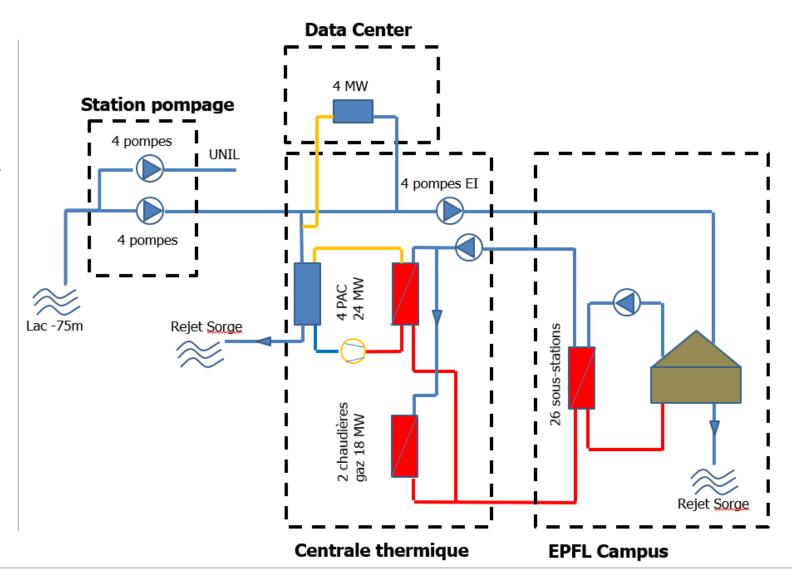
Pourquoi renouveler les infrastructures ?

- Obsolescence des équipements (1987)
- Augmentation des capacités (EPFL/UNIL)
- Objectif 100% renouvelable

Un projet d'envergure

VUE GENERALE

Chauffage et refroidissement par **l'eau du lac Léman**


Renouvellement des infrastructures thermiques

SCHEMA INSTALLATION

Chauffage et refroidissement par **l'eau du lac Léman**

> Capacité de pompage augmentée de 1'150 l/s à 2'700 l/s

Puissance thermique 24 MW PAC 18 MW gaz secours

Renouvellement des infrastructures thermiques

CENTRALE THERMIQUE (photomontage)

STATION DE POMPAGE (photomontage)

Réseaux hydraulique & moyenne tension

Réseau hydraulique

- Distribution d'eau de la station de pompage à la centrale de chauffe
- Conduites en fonte 2 x 700 mm
- Fouilles à ciel ouvert non visibles après les travaux
- Franchissement de la route cantonale : technique sans tranchée – pas d'impact sur la circulation
- Liaisons internes : dans les galeries existantes

Réseau moyenne tension

 Modification du réseau moyenne tension EPFL (partenariat KuMa)

Assainissement et agrandissement de la centrale de chauffe

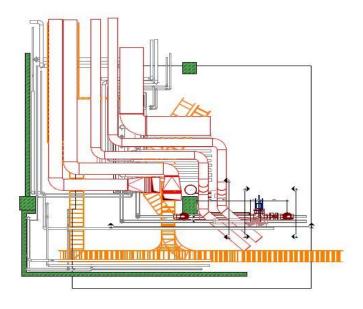
Quatre nouvelles pompes à chaleur

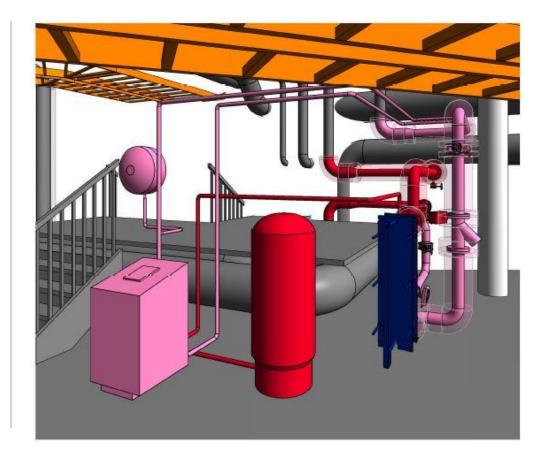
- Puissance totale : 24 MW (4x6 MW)
- COP annuel > 5
- Alimentation 3'000 volts
- Installation à ammoniac

Transformation du réseau de refroidissement

Data center – centre de calcul

- Surélévation du bâtiment
- Centrale photovoltaïque (toit et façades)
- Demande de refroidissement continue de 4 MW
- Grand potentiel de récupération de chaleur




CAPACITE AUGMENTEE

Performance énergétique élevée, **100%** renouvelable

Réseau de distribution

- Renforcement du réseau de distribution de chaleur et de refroidissement
- 26 sous-stations

Sécurité & Environnement

Sécurité

- Pour les intervenants sur les chantiers (élaboration concept PHSE global, mise en place d'une passerelle, etc.)
- Pour les usagers du campus (modification des chemins piétons, etc.)

Environnement

- Notice d'impact complète validant le principe de fonctionnement
- 40 mesures d'accompagnement (air, bruit, eau, nature, paysage, etc.)

MESURES ENVIRONNEMENTALES

Pascal HELFER

Directeur de succursale CSD INGENIEURS+

Procédures cantonales et communales

Procédure DGE - canton

- Installation liées au pompage (conduite lacustre, station de pompage, rejets)
- Concession de pompage
- Autorisations spéciales (15 autor.)
- Centrale de chauffe soumise à OPAM

Procédure standard – communes

- Conduites en fouille
- Transformation de la CCT

Démarche

- NIE : prise en compte des enjeux environnementaux en amont du projet
- Excellente collaboration avec les acteurs locaux et les autorités
- Plus de 40 mesures environnementales intégrées

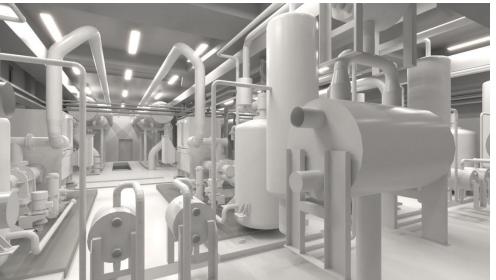
Résultat

- Permis obtenus sans opposition
- Dans les délais fixés

Risque industriel, OPAM

Situation

- Pompes à chaleur à ammoniac
- Charge de 2'800 kg, supérieur au seuil OPAM


Étude OPAM

Analyse de 3 scénarii différents d'accident majeur Intégration de mesures constructives et organisationnelles

- Réduction de la charge par circuit frigorifique
- Confinement des PAC (gaz), rétentions (liquide)
- Détection, alarme, procédures

→ Risque limité

PAC CCT - source: bureau ARCHITRAM

Rejets des Hautes Écoles

Situation actuelle

- 14 rejets d'eau industrielle à la Sorge, Mèbre et Chamberonne
- Eaux de refroidissement et chauffage
- Jusqu'à 800 l/s rejetés
- Effet « on/off »

Impacts sur la faune aquatique (Sorge principalement)

- Éclusées hydrauliques et thermiques (truite, benthos)
- Refroidissement de la Sorge en été (benthos)

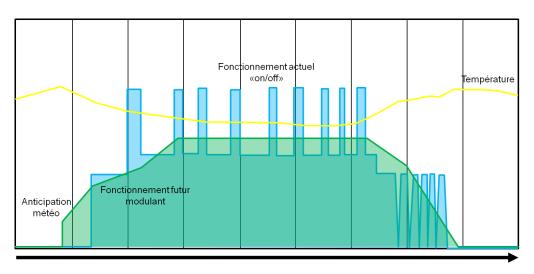
Effets bénéfiques

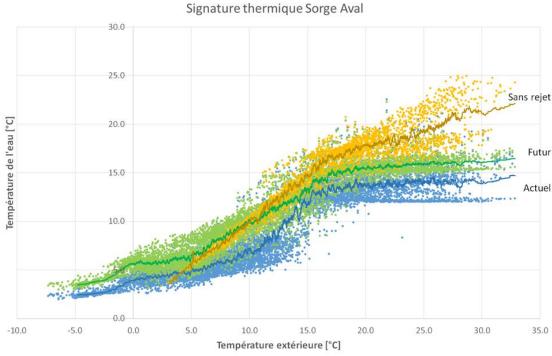
- Soutien à l'étiage (Sorge polluée en amont, débit très faible)
- Abaissement de la température favorable à la truite

Rejets dans la Sorge

Rejets des Hautes Écoles

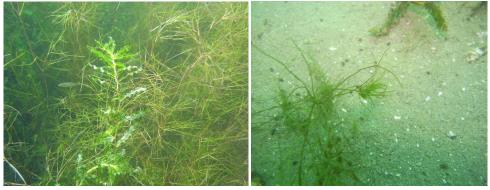
Situation avec projet


Jusqu'à 1'700 l/s rejetés (somme des max)


Mesures intégrées au projet

- Pompes et PAC modulantes, suppression de l'effet
 « on /off »
- Rejet du datacenter à 16°C
- Bouclage conditionnel

Mesures d'amélioration à moyen terme


- Augmentation de la température des rejets
- Anticipation météo et pilotage prédictif
 - → Limitation des impacts sur la faune aquatique
 - → Renforcement des effets bénéfiques

Travaux lacustres

Potamogeton crispus (LC)

Tolypella glomerata (EN)

Inventaire subaquatique des macrophytes

- Mise en évidence de 11 espèces submergées
- Présence de macrophytes menacés

Travaux lacustre

- Travaux de souille sur 560m
- Installation de chantier env. 60m de largeur

Mesures intégrées au projet

- Déplacement des macrophytes menacés par plongeur avant les travaux
- Réalisation des travaux hors période de frai
- Réduction de l'emprise des travaux par souille U
- Rideau anti-sédiments lors des travaux

Suivi environnemental de réalisation

Missions du SER

- Suivre le chantier par rapport au respect
 - Législation en matière d'environnement
 - Charges du permis de construire
 - Mesures prévues dans la NIE
- Enjeux environnementaux des 3 chantiers
 - La gestion des eaux de chantier
 - La protection des sols décapés
 - Le suivi des filières de valorisation et d'élimination des déchets
- Intervention en cas d'incident

SPP - suivi de la qualité des eaux

Suivi des mesures de protection des sols

Contrôle des néophytes envahissantes

MERCI DE VOTRE ATTENTION!