

Gisements renouvelables mobilisables en Suisse romande

Présentation de Jérôme Faessler

- Définition Gisements ou potentiels renouvelables mobilisables
- Filières énergétiques en Suisse romande pour la thermique (chaud/froid)
- Synthèse quantitative des gisements renouvelables mobilisables en Suisse-romande pour quelques filières
- Comparaison avec la consommation actuelle
- Conclusions

Gisements ou potentiels renouvelables

Définitions

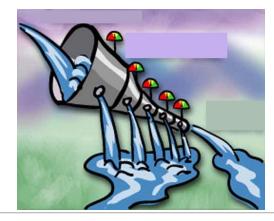
Gisement Renouvelable Ressource exploitée de façon pérenne

Gisement Brut

Non accessible contraintes territoriales techniques, sociales, etc. Potentiel "maximum"

Gisement Accessible

Gisement

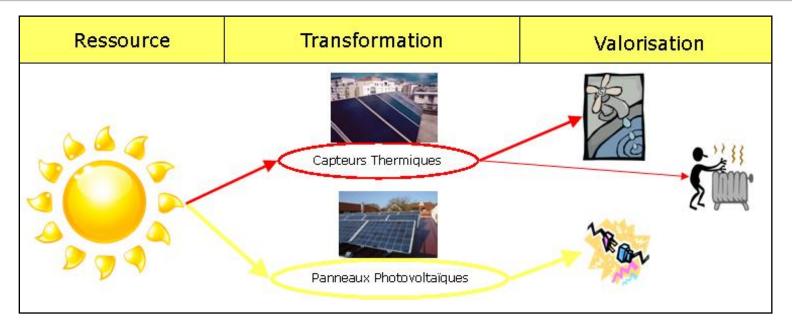

Déjà mobilisé autres usages

Déjà mobilisé existantes

Pilières à développer

Mobilisable
Potentiel "réaliste"

- Le **potentiel théorique (ou gisement brut)** se rapporte à l'offre physique totale d'un agent énergétique dans le périmètre étudié, sans tenir compte des restrictions effectives impliquées par son exploitation
- Le **potentiel technique** est la part du potentiel théorique utilisable compte tenu des restrictions techniques données.
 Comme le potentiel technique dépend de l'évolution technologique, il change au fur du temps
- Le potentiel attendu (ou gisement accessible) est la part du potentiel technique qui remplit les critères « écologique », « économique » et « socialement accepté »
- Le potentiel mobilisable (ou gisement mobilisable) est la part du potentiel attendu pas encore mobilisé
 SOURCE : OFEN, 2012, Potentiel des énergies renouvelables dans la production d'électricité


SOURCE: Faessler J., 2011, Valorisation intensive des énergies renouvelables dans l'agglomération franco-valdo-genevoise (VIRAGE) dans une perspective de société à 2'000W, Thèse Université de Genève, disponible sous https://archive-ouverte.uniqe.ch/uniqe:17272

autres usages

Gisements renouvelables

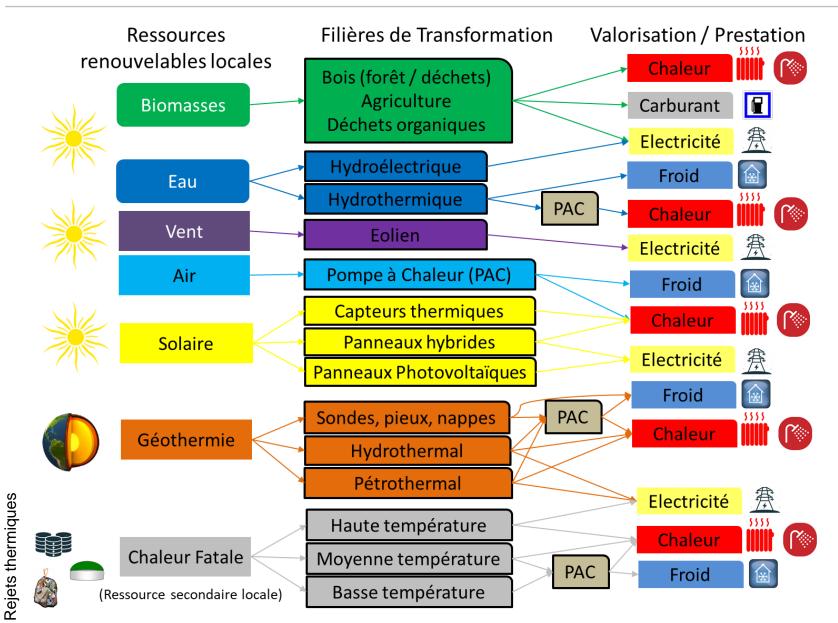
Exemple des filières solaires

<u>Irradiance brute</u> ≈ 1'200 kWh/m²/an

1'075 1'100 1'100 1'150 1'150 1'200 1'250 1'250 1'250 1'250 1'300 1'300 1'400 1'400 1'500 1'500 1'650

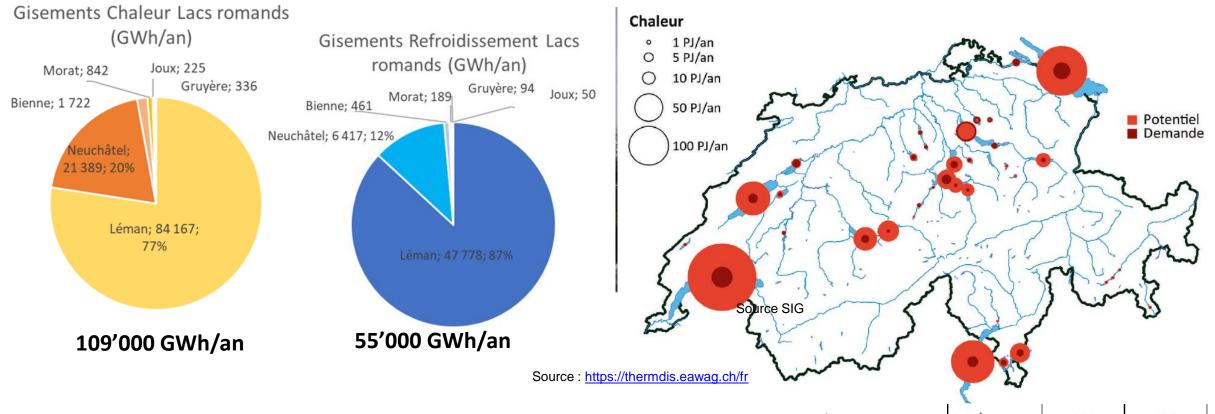
Rendements Transformateurs:

Thermique ≈ 50-60% Photovoltaïque ≈ 15-20%


Energie utile

ECS ≈ 600 kWh/m²/an Chauffage ≈ 300 kWh/m²/an Photovoltaïque ≈ 200 kWh/m²/an

- > Comment passer des m² « bruts » aux m² « utiles » ?
- ➤ Aspects techniques, sociaux, économiques → « ordre de grandeur »


Filières renouvelables Suisse-romande

- Méthodologie de quantification basée ici sur les rapports des services romands de l'énergie et différentes études spécifiques (Approche plus conservatrice que le livre blanc de l'Ascad de 2014)
- Photographie aujourd'hui d'un futur « souhaitable-probable », certaines filières étant encore très mal connues (i.e. géothermie profonde)
- ➤ 4 exemples de gisements mobilisables :
 - Hydrothermie, Géothermie, rejets STEP et biomasses

Lacs et Rivières

- Principalement Lac de Neuchâtel et Lac Léman (Rhône et Sarine pour les rivières)
- Gisement brut très grand ≠ Gisement mobilisable!

Du brut au mobilisable	
facteur 150!	

SOMME	670	455
Vaud	120	80
Valais	60	40
Neuchâtel	140	110
Jura	0	0
Genève	280	175

Géothermie

de	Géothermie faible prof.			Géothermie moyenne prof.			Géothermie grande prof.	
	GWh/an actuelle	GWh/an future	GWh/an mobilisable	GWh/an actuelle	GWh/an future	GWh/an mobilisable	GWh/an actuelle	GWh/an future (mobilisable)
Fribourg	274	360	86	0	?	?	0	85 (th) et 42 (el)
Genève	35	510	475	0	390	390	0	?
Jura	?	8	8	0	55	55	0	55 (th) et 40 (el)
Neuchâtel	16	350	334	0	40	40	0	?
Valais	95	250	155	15	25	10	0	?
Vaud	229	460	231	17	1'440	1'423	0	?
SOMME	649	1'940	1'290	32	1'950	1'918	0	?

Trois types de géothermie :

- Faible profondeur : nappes, sondes ou géostructures permettant de produire de la chaleur et/ou du froid avec des PAC;
- Moyenne profondeur : systèmes hydrothermaux permettant de produire de la chaleur directe et/ou via une PAC ;
- Grande profondeur : systèmes hydrothermaux ou pétrothermaux permettant de produire de l'électricité et/ou de la chaleur directe ;

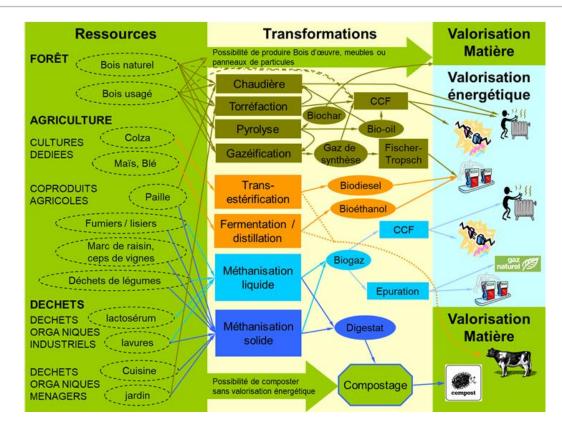
Encore beaucoup d'incertitudes sur la moyenne et grande profondeur!

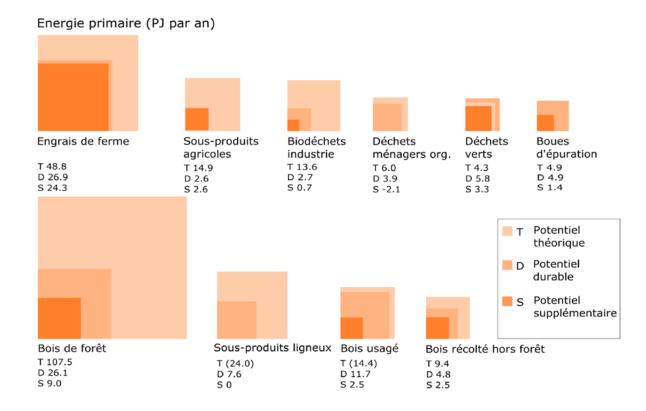
Rejets thermiques STEP (chaleur fatale Eaux Usées)

					Gisement consolidé (basé sur plusieurs études de faisabilité)		Gisement définis par cantons
	Equivalent- Habitants (EH)	Habitants raccordés (Hrac)	Nombre de STEP > 9'000 EH	Nombre de STEP avec potentiel valorisation	Source Froide mobilisable en MW	Chaleur mobilisable en GWh/an	Chaleur mobilisable en GWh/an
Fribourg	581'180	224'066	13	9	15.7	98	139
Genève	913'600	571'608	5	1	40.0	250	370
Jura	87'500	51'363	2	env. 2	3.6	22	?
Neuchâtel	259'700	156'085	8	env. 4	10.9	68	?
Valais	828'654	199'424	13	env. 6	13.9	87	?
Vaud	1'139'038	643'444	27	18	45.0	281	610
SOMME	3'809'672	1'845'990	68	40	129	807	1'119

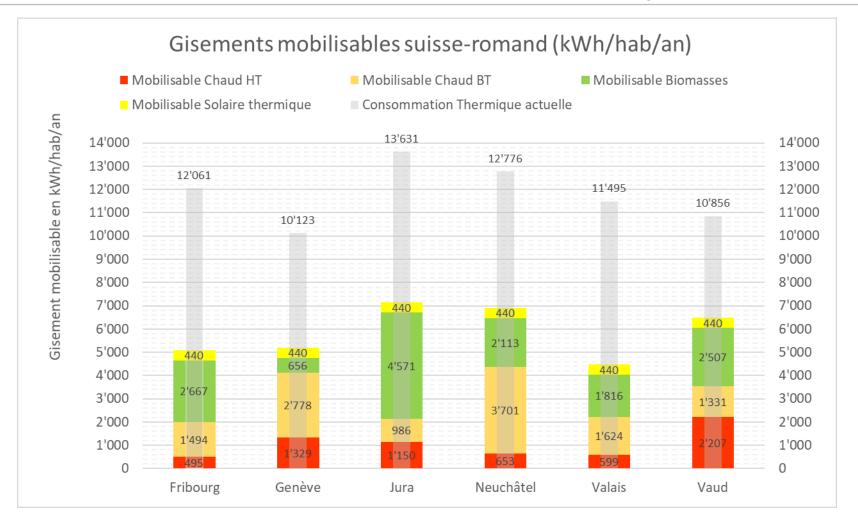
68 STEP romandes, moyenne de 14'300 H_{raccordés}/MW_{th}

Les valeurs globales pour 1.85 millions d'habitants donnent les résultats suivants :


- P_{sortie} STEP (source froide, avec DT=5K) = 129 MW;
- P_{condenseur} PAC = 161 MW (pour un COPA de 5);
- $E_{2000h} = 323 \text{ GWh}_{th}/an \text{ (mono-ressource : fonctionnement 2'000 heures à puissance nominale)};$
- E_{5000h} = 807 GWh_{th}/an (multi-ressource : fonctionnement 5'000 heures à puissance nominale);

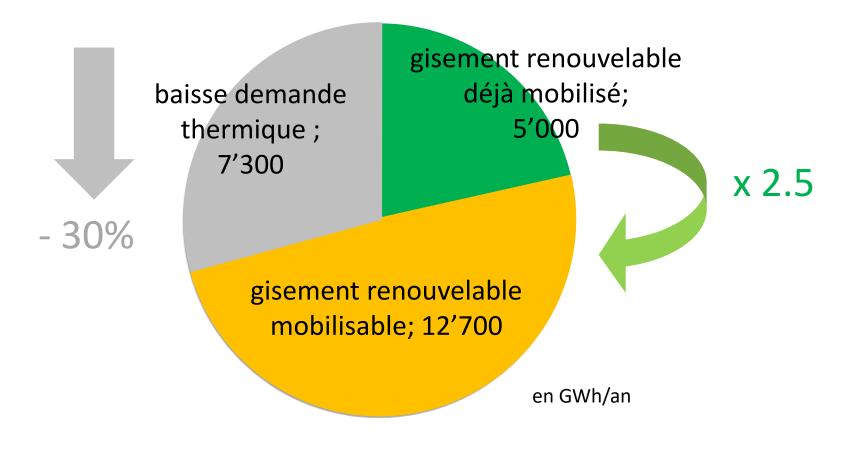


Biomasses


Source: Faessler 2011, https://archive-ouverte.unige.ch/unige:17272

Source: Biomassenpotenziale derSchweiz für die energetische Nutzung https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A13277/datastream/PDF/view.

Le potentiel durable D est d'environ 100 PJ, soit 28 TWh, dont la moitié se situe en suisse-romande. Le gisement encore mobilisable suisse (potentiel supplémentaire S) est d'environ 13 TWh, soit environ 1'500 kWh/habitants (CH)


Gisement mobilisable suisse-romand est d'environ 4'500 GWh/an (2'000 kWh/hab/an), réparti entre un tiers de bois forêt, un tiers d'engrais de ferme et de sous-produits agricoles et un tiers du solde (bois déchets, déchets organiques, biogaz STEP).

Synthèse

- > Consommation moyenne d'environ 11'000 kWh_{th}/hab ou 25'000 GWh_{th}/an
- Environ 5'000 GWh_{th}/an ou 2'300 kWh_{th}/hab (20%) de ressources renouvelables locales déjà mobilisée (50% biomasses)
- ➤ Nécessité d'assainir les bâtiments pour atteindre les objectifs de la politique climatique

- Mobiliser ces gisements pour la transition énergétique reste un travail considérable
- ➤ Développer des réseaux de chaud, froid, tempéré (« anergie ») permet de coupler les offres et les demandes thermiques à des coûts globaux plus intéressants pour la société → mutualisation, efficacité

